In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit

نویسندگان

  • Lihua Wang
  • Pan Liu
  • Pengfei Guan
  • Mingjie Yang
  • Jialin Sun
  • Yongqiang Cheng
  • Akihiko Hirata
  • Ze Zhang
  • Evan Ma
  • Mingwei Chen
  • Xiaodong Han
چکیده

The elastic strain sustainable in crystal lattices is usually limited by the onset of inelastic yielding mediated by discrete dislocation activity, displacive deformation twinning and stress-induced phase transformations, or fracture associated with flaws. Here we report a continuous and gradual lattice deformation in bending nickel nanowires to a reversible shear strain as high as 34.6%, which is approximately four times that of the theoretical elastic strain limit for unconstrained loading. The functioning deformation mechanism was revealed on the atomic scale by an in situ nanowire bending experiments inside a transmission electron microscope. The complete continuous lattice straining process of crystals has been witnessed in its entirety for the straining path, which starts from the face-centred cubic lattice, transitions through the orthogonal path to reach a body-centred tetragonal structure and finally to a re-oriented face-centred cubic structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomic Scale Elastic Textures Coupled to Electrons in Superconductors

We present an atomic scale theory of lattice distortions using strain-related variables and their constraint equations. Our approach connects constrained atomic length scale variations to continuum elasticity and can describe elasticity at all length scales. We apply the general approach to a two-dimensional square lattice with a monatomic basis, and find the atomic scale elastic textures aroun...

متن کامل

Super elastic strain limit in metallic glass films

On monolithic Ni-Nb metallic glass films, we experimentally revealed 6.6% elastic strain limit by in-situ transmission electron microscopy observations. The origin of high elastic strain limit may link with high free volume in the film, causing the rearrangement of loosely bonded atomic clusters (or atoms) upon elastic deformation. This high elastic limit of metallic glass films will shed light...

متن کامل

Limit of Dislocation Density and Ultra-Grain-Refining on Severe Deformation in Iron

It is well-known that severe deformation to metals causes a direct grain refinement of the matrix without special heat-treatments due to the mechanism of dynamic continuous recrystallization (DCR). However, the microstructural revolution during severe deformation is seemed to be different depending on the deformation mode, namely the direction of deformation. In general, multi-directional defor...

متن کامل

Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism.

Large strain plasticity is phenomenologically defined as the ability of a material to exhibit an exceptionally large deformation rate during mechanical deformation. It is a property that is well established for metals and alloys but is rarely observed for ceramic materials especially at low temperature ( approximately 300 K). With the reduction in dimensionality, however, unusual mechanical pro...

متن کامل

Low-Temperature In Situ Large-Strain Plasticity of Silicon Nanowires**

Elastic-plastic and fracture properties are key issues in characterizing materials’ mechanical behavior, and they have been extensively studied for over a century for bulk structured materials. Silicon is one of the most important and representative materials for these studies owing to its extremely important applications. Silicon nanowires (NWs) are one of the most important nanostructures use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013